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of the global symmetry group.

Keywords: AdS-CFT Correspondence, 1/N Expansion, Supersymmetric gauge theory.

mailto:t.w.brown@qmul.ac.uk
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
8
)
0
0
8

Contents

1. Introduction 1

2. Dilatation operator 3

3. One-loop correlator 6

4. Operator mixing 8

4.1 Dilatation operator 11

5. Higher loops and other sectors 12

6. Discussion 13

A. Conventions and formulae 13

B. Diagrammatics 14

C. Symmetric group representation matrices 15

D. Further analysis of the matrices 15

E. Example 16

F. Code 17

1. Introduction

N = 4 supersymmetric Yang-Mills has three complex scalars transforming in the adjoint

representation of the gauge group U(N). We focus on operators built out of two of the

complex scalars, X and Y , which is a U(2) ⊂ SU(4) ⊂ PSU(2, 2|4) subsector of the full

global symmetry group of the theory. Their basic correlators are given in terms of their

U(N) fundamental and antifundamental indices

〈

X†i
j(x) Xk

l (0)
〉

=
〈

Y †i
j(x) Y k

l (0)
〉

=
1

x2
δi
l δk

j

〈

X†i
j(x) Y k

l (0)
〉

= 0 (1.1)

From here onwards we will drop the spacetime dependence of the correlators and focus

on the combinatorial parts. We will use a convention whereby 〈· · ·〉 means the tree-level

correlator where we Wick contract with (1.1).
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Figure 1: A planar one-loop diagram for a part of the two-point function between tr(XXY Y ) and

tr(X†X†Y †Y †) with the tr(Y XX†Y †) effective vertex; note this leading N4+1 behaviour

We can build gauge-invariant operators by taking traces such as tr(Y ) tr(XY X) or

tr(XXY Y ). These can be written by letting permutations act on the gauge indices

tr(Y ) tr(XY X) = Xi1
i4

Xi2
i1

Y i3
i3

Y i4
i2

= Xi1
iα(1)

Xi2
iα(2)

Y i3
iα(3)

Y i4
iα(4)

≡ tr(α XXY Y ) (1.2)

Here α = (142) is an element of the symmetric group S4 of permutations of four objects.

In this paper we derive an expression for the one-loop two-point function of these

operators in terms of this group-theoretic language. In essence all this requires is that we

follow permutations and double-line index loops [2] carefully. We make extensive use of the

representation theory methods developed for the U(1) sector in [3] and the diagrammatic

techniques introduced in [4].

At tree level the correlator in terms of permutations is [1]

〈

tr(α2 X†µY †ν) tr(α1 XµY ν)
〉

=
1

µ!ν!

∑

σ,τ∈Sµ×Sν

∑

T ⊢n

χT (σ−1α1σ τ−1α2τ)DimT (1.3)

Here Xµ just means µ copies of X (µ is a power not an index) and similarly for Y . Sµ×Sν

is the subgroup of the symmetric group Sµ+ν that doesn’t mix the first µ items with the

last ν, reflecting the fact that X does not mix with Y when we Wick contract with (1.1).1

We sum over all n ≡ µ + ν box Young diagrams T with at most N rows, each of which

labels an irreducible representation both of Sn and of U(N). This Schur-Weyl duality of

the irreducible representations of Sn and U(N) follows because they have a commuting

action on V ⊗n
N where VN is the fundamental representation space of U(N). χT is an Sn

character and DimT is the dimension of the U(N) representation. Because T has n boxes

its leading large N behaviour is DimT ∼ kNn (see identity (A.1)).

In [1] a basis O[Λ, µ, ν, β;R; τ ] was found that diagonalises this tree-level two-point

function. [Λ, µ, ν, β] labels the U(2) representation and state while R labels the U(N)

representation which organises the multi-trace structure.2

1This expression for the tree level correlator is a little redundant because we can absorb the τ sum into

the σ sum; we have written it like this to emphasis the comparison with the one-loop case.
2The operator as a whole is a U(N) singlet since it is gauge-invariant.
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At one loop we get corrections from the self-energy, the scalar four-point vertex and

the exchange of a gluon. Cancellations among these corrections mean that the one-loop

correlator is given by an effective vertex [5, 6]

〈

tr(α2 X†µY †ν) : tr([X,Y ][X†, Y †]) : tr(α1 XµY ν)
〉

(1.4)

For convenience we have dropped a − g2
YM
8π

prefactor and the spacetime dependence

log(xΛ)−2/x2n for some cutoff Λ. The expression betwen colons :: is normal-ordered so

that no contractions within the colons is allowed. In sections 2 and 3 we derive an expres-

sion for this one-loop correlator in terms of permutations

1

(µ−1)!

1

(ν−1)!

∑

σ,τ∈Sµ×Sν

∑

ρ1,ρ2∈Sn+1

h(ρ1, ρ2)
∑

T ⊢n+1

χT (ρ1 σ−1α1σ ρ2 τ−1α2τ)DimT (1.5)

Compare this with (1.3). Now T has n + 1 boxes and χT is a character of Sn+1. For

large N the leading behaviour is DimT ∼ kNn+1, which is what we expect for the

one-loop result (see for example figure 1). h(ρ1, ρ2) only takes non-zero values on a few

permutations of the µ, n and n+1 indices (it is given in full in equation (2.12)); it encodes

the commutators in (1.4).

We also derive a similar expression for the one-loop dilatation operator.

We find that the Clebsch-Gordan basis O[Λ, µ, ν, β;R; τ ] has constrained mixing at one

loop. If two operators are in the same U(2) representation and state, then if their U(N)

representations R1 and R2 are different they only mix if we can add a box to each Young

diagram to get the same U(N) representation with n + 1 boxes T . For example R1 =

and R2 = mix because we can get them both by knocking a single box off T = .

In other words, when we restrict the representation T of Sn+1 to its Sn subgroup, R1 and

R2 must both appear in the reduction. This mixing is analysed in section 4. A detailed

look at the U(2) representation Λ = operators is given in appendix E.

Extensions to higher loops and the rest of the global symmetry are discussed in

section 5.

Appendix A covers some group theory conventions and formulae; appendix B briskly

introduces the diagrammatic formalism we use; appendix C revises the construction of the

representing matrices for the symmetric group.

2. Dilatation operator

Given that
〈

X†i
j Xk

l

〉

= X̃i
j Xk

l = δi
lδ

k
j where X̃i

j = d

dX
j
i

we can get the one-loop correlator

by first acting on tr(α1 XµY ν) with the one-loop dilatation operator [6 – 9]

∆(1) = tr([X,Y ][X̃, Ỹ ]) (2.1)

As a warm-up consider the action of X̃a
b on

Xi1
j1
· · ·Xin

jn
(2.2)
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By the product rule we get
(

δa
j1

δi1
b

)

Xi2
j2
· · ·Xin

jn
+ Xi1

j1

(

δa
j2

δi2
b

)

Xi3
j3
· · ·Xin

jn
+ · · · (2.3)

To write this down in terms of permutations we shuffle around the δ’s with σ ∈ Sn so that

the derivative only ever acts on the final index

1

(n − 1)!

∑

σ∈Sn

(

δa
jσ(n)

δ
iσ(n)

b

)

X
iσ(1)

jσ(1)
· · ·Xiσ(n−1)

jσ(n−1)
(2.4)

We divide by (n − 1)! because summing over all of Sn is redundant.3

It is a small step now to the action of X̃a
b Ỹ c

d on

Xi1
j1
· · ·Xiµ

jµ
Y

iµ+1

jµ+1
· · ·Y iµ+ν

jµ+ν
(2.5)

We get

1

(µ−1)!

1

(ν−1)!

∑

σ∈Sµ×Sν

(

δa
jσ(µ)

δ
iσ(µ)

b

)(

δc
jσ(µ+ν)

δ
iσ(µ+ν)

d

)

X
iσ(1)

jσ(1)
· · ·Xiσ(µ−1)

jσ(µ−1)
Y

iσ(µ+1)

jσ(µ+1)
· · ·Y iσ(µ+ν−1)

jσ(µ+ν−1)

Next we relabel indices iσ(k) → pk and jσ(k) → qk for k ∈ {1, . . . µ− 1, µ + 1, . . . µ + ν − 1}.
This amounts to writing X

iσ(k)

jσ(k)
= δ

iσ(k)
pk

δqk

jσ(k)
Xpk

qk
, which is just a book-keeping exercise.4

1

(µ − 1)!

1

(ν − 1)!

∑

σ∈Sµ×Sν

(

δa
jσ(µ)

δ
iσ(µ)

b

)(

δc
jσ(µ+ν)

δ
iσ(µ+ν)

d

)

δ
iσ(1)
p1 · · · δiσ(µ−1)

pµ−1 δ
iσ(µ+1)
pµ+1 · · · δiσ(µ+ν−1)

pµ+ν−1 δq1

jσ(1)
· · · δqµ−1

jσ(µ−1)
δ
qµ+1

jσ(µ+1)
· · · δqµ+ν−1

jσ(µ+ν−1)

Xp1
q1

· · ·Xpµ−1
qµ−1 Y

pµ+1
qµ+1 · · ·Y pµ+ν−1

qµ+ν−1 (2.6)

Now let’s contract some indices. We’re not interested in the gauge-covariant operator (2.5);

we’d like to know about tr(α1 XµY ν), which means setting jm = iα1(m). Also we need to

contract the indices of the dilatation operator tr([X,Y ][X̃, Ỹ ])

tr(XY X̃Ỹ )−tr(Y XX̃Ỹ )−tr(XY Ỹ X̃)+tr(Y XỸ X̃)

=X
pµ
qµ Y

pµ+ν
qµ+ν X̃a

b Ỹ c
d

(

δ
qµ
pµ+ν δ

qµ+ν
a δb

cδ
d
pµ
−δ

qµ
a δ

qµ+ν
pµ δb

cδ
d
pµ+ν

−δ
qµ
pµ+νδ

qµ+ν
c δb

pµ
δd
a+δ

qµ
c δ

qµ+ν
pµ δb

pµ+ν
δd
a

)

(2.7)

This all looks frightful, but let’s take the first term of the one-loop dilatation operator and

work it out

tr(XY X̃Ỹ ) [tr(α1 XµY ν)] =
1

(µ − 1)!

1

(ν − 1)!

∑

σ∈Sµ×Sν

δ
qµ+ν

iα1σ(µ)
δ
iσ(µ)

iα1σ(µ+ν)
δ
iσ(µ+ν)
pµ δ

qµ
pµ+ν

δ
iσ(1)
p1 · · · δiσ(µ−1)

pµ−1 δ
iσ(µ+1)
pµ+1 · · · δiσ(µ+ν−1)

pµ+ν−1 δq1

iα1σ(1)
· · · δqµ−1

iα1σ(µ−1)
δ
qµ+1

iα1σ(µ+1)
· · · δqµ+ν−1

iα1σ(µ+ν−1)

Xp1
q1

· · ·Xpµ
qµ Y

pµ+1
qµ+1 · · ·Y pµ+ν

qµ+ν (2.8)

3It would be more economical to sum over σ ∈ Sym(n), the symmetry group of an n-cycle, in which case

we would not have to divide by (n − 1)!, but this is not necessary for our purposes.
4We advise the reader to glance over appendix B for the delta function and diagrammatic techniques

used here.
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(X, Y )pk
qk

X
pµ
qµ

σ−1

α1σ

Y
pµ+ν
qµ+ν

pµ+ν+1
qµ+ν+1

Figure 2: The first term tr(XY X̃Ỹ ) of the one-loop dilatation operator acting on tr(α1 XµY ν); k

labels the indices in {1, . . . µ− 1, µ + 1, . . . µ + ν − 1} and these delta function strands are grouped

together into a single thick strand; the µ, µ + ν and µ + ν + 1 strands are drawn separately

Although this still looks rather ghastly, we can see some similarities emerging between the

terms from the dilatation operator on the first line and those on the second line from the

Wick contractions. They become clear if we introduce an extra index µ+ν+1 and split out

the deltas δ
qµ
pµ+ν = δ

qµ

iµ+ν+1
δ
iµ+ν+1
pµ+ν and δ

iσ(µ)

iα1σ(µ+ν)
= δ

iσ(µ)
pµ+ν+1δ

pµ+ν+1
qµ+ν+1 δ

qµ+ν+1

iα1σ(µ+ν)
. The expression

is now more pleasing

tr(XY X̃Ỹ ) [tr(α1 XµY ν)] =
1

(µ − 1)!

1

(ν − 1)!

∑

σ∈Sµ×Sν

Xp1
q1

· · ·Xpµ
qµ Y

pµ+1
qµ+1 · · ·Y pµ+ν

qµ+ν δ
pµ+ν+1
qµ+ν+1

δ
iσ(1)
p1 · · · δiσ(µ−1)

pµ−1 δ
iσ(µ+ν)
pµ δ

iσ(µ+1)
pµ+1 · · · δiσ(µ+ν−1)

pµ+ν−1 δ
iµ+ν+1
pµ+ν δ

iσ(µ)
pµ+ν+1

δq1
iα1σ(1)

· · · δqµ−1

iα1σ(µ−1)
δ
qµ

iµ+ν+1
δ
qµ+1

iα1σ(µ+1)
· · · δqµ+ν−1

iα1σ(µ+ν−1)
δ
qµ+ν

iα1σ(µ)
δ
qµ+ν+1

iα1σ(µ+ν)
(2.9)

Introducing the extra index allows us to draw this diagrammatically as a trace of a series of

operations on the strands, see figure 2. This was not possible with the expression in (2.8).

Converting the diagram back to a formula we get

tr(XY X̃Ỹ ) [tr(α1 XµY ν)]

=
1

(µ−1)!

1

(ν−1)!

∑

σ∈Sµ×Sν

tr
(

(µ, µ+ν + 1, µ + ν)σ−1α1σ(µ, µ+ν+1, µ+ν)XµY ν
IN

)

(2.10)

IN is a single U(N) identity matrix and (µ, µ+ν+1, µ+ν) is a 3-cycle permutation in Sn+1.

If we include the other terms in the one-loop dilatation operator (2.7) then we get

tr([X,Y ][X̃, Ỹ ]) [tr(α1 XµY ν)]

=
1

(µ − 1)!

1

(ν − 1)!

∑

σ∈Sµ×Sν

∑

ρ1,ρ2∈Sn+1

h(ρ1, ρ2) tr(ρ1 σ−1α1σ ρ2 XµY ν
IN ) (2.11)
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(X, Y )pk
qk

Y
pµ+ν
qµ+νX

pµ
qµ

pµ+ν+1
qµ+ν+1

ρ1

ρ2

σ−1α1σ

Figure 3: The general diagram for any of the four terms of the one-loop dilatation operator

See figure 3 for the diagram for general ρ1, ρ2. h takes non-zero values on

h((µ, n + 1, n), (µ, n + 1, n)) = 1

h((µ, n + 1), (n, n + 1)) = −1

h((n, n + 1), (µ, n + 1)) = −1

h((µ, n, n + 1), (µ, n, n + 1)) = 1 (2.12)

We can write this in a more symmetric fashion that better reflects the commutator structure

of the one-loop dilatation operator

h( (µ, n + 1), (n, n + 1) ) = −1

h( (µ, n) (µ, n + 1), (n, n + 1) (µ, n) ) = 1

h( (µ, n) (µ, n + 1) (µ, n), (µ, n) (n, n + 1) (µ, n) ) = −1

h( (µ, n + 1) (µ, n), (µ, n) (n, n + 1) ) = 1 (2.13)

We will use this later.

We can see that this extra index gives an enhancement by a factor of N when a loop

forms, see figure 4. This happens when σ−1α1σ maps µ+ν 7→ µ or µ 7→ µ+ν, i.e. when X

and Y are next to each other in a trace tr(· · ·XY · · · ). This is well-studied in the planar

context where this contribution dominates and the model is exactly solvable by the Bethe

Ansatz (see for example [10 – 12]). In the non-planar context the trace structure of the

operator is still modified when σ−1α1σ does not satisfy this condition, and traces can split

and join (see for example [13]).

3. One-loop correlator

To get the one-loop correlator we take the tree-level correlator of tr(α2 X†µY †ν) with the

– 6 –
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qk

Y
pµ+ν
qµ+νX

pµ
qµ

pµ+ν+1
qµ+ν+1

σ−1α1σ

Figure 4: An example of how the extra index allows an index loop to form, giving an N enhance-

ment

image of tr(α1 XµY ν) under the one-loop dilatation operator

〈

tr(α2 X†µY †ν) : tr([X,Y ][X†, Y †]) : tr(α1 XµY ν)
〉

=
〈

tr(α2 X†µY †ν) tr([X,Y ][X̃, Ỹ ]) [tr(α1 XµY ν)]
〉

=
1

(µ − 1)!

1

(ν − 1)!

∑

σ∈Sµ×Sν

∑

ρ1,ρ2∈Sn+1

h(ρ1, ρ2)

〈

X†j1
jα2(1)

· · ·Y †jn

jα2(n)
Xi1

i
ρ1σ−1α1σρ2(1)

· · · Y in
i
ρ1σ−1α1σρ2(n)

δ
in+1

i
ρ1σ−1α1σρ2(n+1)

〉

(3.1)

Now Wick contract with (1.1), permuting with τ for all the possible combinations

1

(µ − 1)!

1

(ν − 1)!

∑

σ,τ∈Sµ×Sν

∑

ρ1,ρ2∈Sn+1

h(ρ1, ρ2)

δ
jτ(1)

i
ρ1σ−1α1σρ2(1)

δi1
jα2τ(1)

· · · δ
jτ(n)

i
ρ1σ−1α1σρ2(n)

δin
jα2τ(n)

δ
in+1

i
ρ1σ−1α1σρ2(n+1)

=
1

(µ−1)!

1

(ν−1)!

∑

σ,τ∈Sµ×Sν

∑

ρ1,ρ2∈Sn+1

h(ρ1, ρ2)δ
i1
i
ρ1σ−1α1σρ2τ−1α2τ(1)

· · · δin+1

i
ρ1σ−1α1σρ2τ−1α2τ(n+1)

=
1

(µ − 1)!

1

(ν − 1)!

∑

σ,τ∈Sµ×Sν

∑

ρ1,ρ2∈Sn+1

h(ρ1, ρ2) tr(ρ1 σ−1α1σ ρ2 τ−1α2τ I
n+1
N ) (3.2)

See figure 5 for the diagrammatic representation of this trace. We can expand it in

characters of Sn+1 and dimensions of U(N) (n + 1)-box representations

〈

tr(α2 X†µY †ν) :tr([X,Y ][X†, Y †]) : tr(α1 XµY ν)
〉

=
1

(µ−1)!

1

(ν−1)!

∑

σ,τ∈Sµ×Sν

∑

ρ1,ρ2∈Sn+1

h(ρ1, ρ2)
∑

T ⊢n+1

χT (ρ1 σ−1α1σ ρ2 τ−1α2τ)DimT (3.3)

– 7 –
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ρ1

ρ2

σ−1α1σ

τ−1α2τ

k µ µ+ν µ+ν+1

Figure 5: One-loop correlator

4. Operator mixing

Operator mixing between single- and multi-trace operators at one-loop has been well

studied (see for example [14 – 17, 6]). Here we will consider the mixing of a different basis

of operators.

In [1] a complete basis of gauge-invariant operators was constructed that diagonalises

the tree-level correlator for a theory with U(M) global flavour symmetry and U(N) gauge

symmetry. This Clebsch-Gordan basis tells us how to mesh the U(2) (or more generally

the U(M)) representation, which dictates how the operator transforms under the flavour

group, with the U(N) representation, which controls the multi-trace structure

O[Λ, µ, ν, β;R; τ ] ≡ 1

(n!)2

∑

α,σ∈Sn

Bjβ Sτ,Λ
i

R
k

R
l DΛ

ij(σ)DR
kl(α) tr(ασ XµY ν σ−1)

=
1

n!

∑

α∈Sn

Bjβ Sτ,Λ
j

R
p

R
q DR

pq(α) tr(α XµY ν) (4.1)

The equality follows from identity (A.2). Here Λ labels the U(2) representation and

[µ, ν, β] labels the state within Λ: µ, ν label the number of fields X,Y and β ∈
{1, . . . g(

µ

z }| {

··· ,
ν

z }| {

··· ; Λ)} labels the semistandard tableau with field content Xµ and Y ν .5

R labels the U(N) representation, which dictatess the multi-trace structure of the operator.

τ labels the number of times Λ appears in the symmetric group tensor product R⊗R (also

called the inner product). Sτ,Λ
j

R
p

R
q is the Sn Clebsch-Gordan coefficient for this tensor

5The Littlewood-Richardson coefficient g counts the number of times Λ appears in

µ

z }| {

··· ◦

ν

z }| {

··· , where

◦ is the tensor product for U(2) and the outer product for the symmetric group Sn. For such tensor products

of totally symmetric representations, this Littlewood-Richardson coefficient is also known as the Kostka

number for Λ and field content µ, ν. In the U(2) case this is all a bit trivial because g( ··· , ··· ; Λ) is

either zero or one, but the β multiplicity becomes non-trivial for U(M) with M ≥ 3. Bjβ is the branching

coefficient for the restriction of Λ to the representation

µ

z }| {

··· ◦

ν

z }| {

··· of its Sµ × Sν subgroup.

– 8 –
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product.6 From the unitary group perspective S blends the global symmetry U(2) with

the gauge symmetry U(N). DR
pq(α) is the real orthogonal Young-Yamanouchi dR × dR

matrix for the representation R of the symmetry group Sn. It is constructed in section 7

of Hamermesh [18] following the presentation by Yamanouchi [19]. All of these factors are

explained in detail in [1].

At tree level these operators are diagonal

〈

O†[Λ2, µ2, ν2, β2;R2; τ2] O[Λ1, µ1, ν1, β1;R1; τ1]
〉

= δ
[Λ1,µ1,ν1,β1;R1;τ1]
[Λ2,µ2,ν2,β2;R2;τ2]

µ1!ν1! DimR1

d2
R1

(4.2)

Now consider the one-loop correlator

〈

O†[Λ2, µ, ν, β2;R2; τ2] : tr([X,Y ][X†, Y †]) : O[Λ1, µ, ν, β1;R1; τ1]
〉

(4.3)

A priori we know that the one-loop dilatation operator will not mix the U(2) representations

labelled by Λ and the states within those representations labelled by [µ, ν, β] because the

one-loop dilatation operator commutes with the classical generators of U(2) (and indeed

of the full classical superconformal group [20]).7 There is however no reason why the

U(N) representations R controlling the multi-trace structure shouldn’t mix and we will

now analyse this using our one-loop result (3.3).

The first thing we notice, following techniques from [1], is that for a general function

of a permutation f(α)

1

n!

∑

α∈Sn

BjβSτ,Λ
j

R
p

R
q DR

pq(α)
∑

σ∈Sµ×Sν

f(σ−1ασ) =
µ!ν!

n!

∑

α∈Sn

BjβSτ,Λ
j

R
p

R
q DR

pq(α)f(α) (4.4)

so that for the one-loop correlator (3.3) we can absorb the Sµ × Sν sums.8

Thus if we concentrate on the U(N) representation parts of equations (3.3) and (4.3)

we find

∑

α1,α2∈Sn

DR1
p1q1

(α1)D
R2
p2q2

(α2)
∑

T ⊢n+1

χT (ρ1 α1 ρ2 α2)DimT (4.5)

If we expand the character, which is just a trace of Sn+1 representing matrices for T , we get

∑

α1,α2∈Sn

DR1
p1q1

(α1)D
R2
p2q2

(α2)
∑

T ⊢n+1

DT
ab(ρ1)D

T
bc(α1)D

T
cd(ρ2)D

T
da(α2)DimT (4.6)

We can pick out the sum over α1 say

∑

α1∈Sn

DR1 ⊢n
p1q1

(α1)D
T ⊢n+1
bc (α1) (4.7)

6Sτ,Λ
j

R
p

R
q for Sn is exactly analogous to the 3j-symbol for SU(2), which is just an expression of the

Clebsch-Gordan coefficients.
7We thank Sanjaye Ramgoolam for discussions on this point.
8Another way of understanding this is that α 7→ σ−1ασ for σ ∈ Sµ × Sν is a symmetry of the operator

tr(α XµY ν).
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α1 is in the Sn subgroup of Sn+1. As a representation of Sn the representation T is

reducible. It reduces to those n-box representations of Sn whose Young diagrams differ

by a box from T . Consider the example used in section 7 of Hamermesh [18]

T

∣

∣

∣

∣

∣

∣

S18⊂S19

→ T1 ⊕ T3 ⊕ T4 ⊕ T5 (4.8)

The index r of Tr labels the row from which the box was removed from T . This direct

product structure is manifest for the representation matrices constructed by Young

and Yamanouchi, where the matrix DT is block-diagonal for elements of the subgroup

σ ∈ Sn ⊂ Sn+1. For example (4.8)

DT ⊢n+1(σ) =











DT1 ⊢n(σ)

DT3 ⊢n(σ)

DT4 ⊢n(σ)

DT5 ⊢n(σ)











(4.9)

For a representation Tr of Sn we can then apply the identity

∑

α1∈Sn

DR1 ⊢n
p1q1

(α1)D
Tr ⊢n
bc (α1) =

n!

dTr

δR1Trδp1bδq1c (4.10)

This identity follows from Schur’s lemma and the orthogonality of the representing matrices.

Given the block-diagonal decomposition of DT on α1 and α2 we find that (4.6) is only

non-zero if R1 = Tr and R2 = Ts for some T and for some r and s labelling the row from

which a box is removed from T . If there is no T such that we can remove a single box to

reach R1 and R2 then the one-loop correlator vanishes. This is the crucial point.

If R1 6= R2 then there is at most one representation T of Sn+1 satisfying this property

and we find that (4.6) becomes

n!

dTr

n!

dTs

DT
q2
s

p1
r
(ρ1)D

T
q1
r

p2
s
(ρ2)DimT (4.11)

The letters underneath the matrix indices indicate the sub-range of the dT indices of DT

over which the index ranges. For example, here q2 only ranges over the dTs indices of DT

in the appropriate s sub-row of DT and p1 only ranges over the dTr indices in the r sub-

column (see for example the matrix in (4.9)).9 Thus for DT
q2
s

p1
r
(ρ1) q2 and p1 label elements

in an off-diagonal sub-block of DT . This does not vanish because ρ1 is a generic element

of Sn+1 not in its Sn subgroup.

So if there exists a T for which R1 = Tr and R2 = Ts and R1 6= R2
〈

O†[Λ2, µ, ν, β2;Ts; τ2] : tr([X,Y ][X†, Y †]) : O[Λ1, µ, ν, β1;Tr; τ1]
〉

=
µνµ!ν!

dTrdTs

Bj1β1S
τ1,Λ1

j1
Tr
p1

Tr
q1

Bj2β2S
τ2,Λ2

j2
Ts
p2

Ts
q2

∑

ρ1,ρ2∈Sn+1

h(ρ1, ρ2)D
T
q2
s

p1
r
(ρ1)D

T
q1
r

p2
s
(ρ2)DimT (4.12)

9To be more sophisticated, s is the first number in the Yamanouchi symbol for the index of T and q2 is

the rest of the symbol for Ts.
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If we use the more symmetric expression for h in (2.13) then we can use identity (A.2)

from appendix A to get

− µνµ!ν!

dTrdTs

Bj1β1 Sτ1,Λ1
k1

Tr
p1

Tr
q1

Bj2β2 Sτ2,Λ2
k2

Ts
p2

Ts
q2

DΛ1
j1k1

(1 − (µ, n)) DΛ2
j2k2

(1 − (µ, n)) DT
q2
s

p1
r
((µ, n + 1))DT

q1
r

p2
s
((n, n + 1))DimT (4.13)

This expression nicely encodes the vanishing of the one-loop correlator for the half-BPS

operators transforming in the symmetric representation of the flavour group (for Λ =

··· , DΛ(σ) = 1 ∀σ).

Some hints on how to simplify this expression further, and how one might extract

explicitly the orthogonality of U(2) representations, is given in appendix D.

If R1 = R2 ≡ R then we must sum over all the representations T of Sn+1 with Tr = R

〈

O†[Λ2, µ, ν, β2;R; τ2] : tr([X,Y ][X†, Y †]) : O[Λ1, µ, ν, β1;R; τ1]
〉

=
∑

T s.t. R=Tr

µνµ!ν!

d2
Tr

Bj1β1 Sτ1,Λ1
j1

Tr
p1

Tr
q1

Bj2β2 Sτ2,Λ2
j2

Tr
p2

Tr
q2

∑

ρ1,ρ2∈Sn+1

h(ρ1, ρ2)D
T
q2
r

p1
r
(ρ1)D

T
q1
r

p2
r
(ρ2)DimT

An example of these mixing properties is worked out for Λ = in appendix E.

Some general comments:

• We can interpret the U(N) representation T ⊢ n + 1 as an intermediate channel

through which the operators mix via the ‘overlapping’ of R1 ⊢ n and R2 ⊢ n with T .

• Given that smaller Young diagrams are more likely to be related to each other by

moving a box than larger diagrams, mixing at one loop is much more likely for

smaller representations than larger ones. Larger ones can be considered practically

diagonal at 1-loop (but not at higher loops, see section 5).

4.1 Dilatation operator

We can now apply this analysis to the one-loop dilatation operator.

∆(1) O[Λ, µ, ν, β;R; τ ] =
∑

S,τ ′

CR,τ
S,τ ′ O[Λ, µ, ν, β;S; τ ′] (4.14)

S must be obtainable by removing a box from R and then putting it back somewhere. We

can obtain the matrix CR,τ
S,τ ′ by reverse-engineering the one-loop mixing (4.13) using the

tree-diagonality of the Clebsch-Gordan basis (4.2). We can see for example that for R 6= S

which mix via T ⊢ n + 1 we can factor out the N dependence

CR;τ
S;τ ′ = − µν

dS

dR

DimT

DimS
Bj1β Sτ,Λ

k1

R
p1

R
q1

Bj2β Sτ ′,Λ
k2

S
p2

S
q2

DΛ
j1k1

(1 − (µ, n)) DΛ
j2k2

(1 − (µ, n)) DT
q2
s

p1
r
((µ, n + 1))DT

q1
r

p2
s
((n, n + 1))

∝ DimT

DimS
∝ N − i + j (4.15)
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where i labels the row coordinate and j the column coordinate of the box R has that S

doesn’t (see equation (A.1)).

The kernel of this map provides the 1
4 -BPS operators [21, 22], but we have no further

insight on how to obtain a pleasing group theoretic expression for these operators beyond

the hints given in [1] concerning the dual basis [23, 24]. Something like the dual basis seems

particularly relevant given that it arose in the SU(N) context [25, 23] from knocking boxes

off representations to differentiate Schur polynomials.

5. Higher loops and other sectors

If we assume that higher ℓ-loop contributions to the correlator can always be written in

terms of an effective vertex like (1.4) (it works for two loops [11]) then we guess that they

can be written in terms of Sn+ℓ and U(N) group theory
∑

σ,τ∈Sµ×Sν

∑

ρ1,ρ2∈Sn+ℓ

hℓ(ρ1, ρ2)
∑

T ⊢n+ℓ

χT (ρ1 σ−1α1σ ρ2 τ−1α2τ)DimT (5.1)

hℓ(ρ1, ρ2) only takes non-zero values on a few permutations of ℓ+1 of the {1, . . . n} indices

(where the derivative acts) and the n + 1, . . . n + ℓ indices. The σ and τ construction

permutes the X’s and Y ’s for the product rule.

This guess is informed by the leading planar Nn+ℓ contribution to the ℓ-loop term,

which is provided by the large N behaviour of DimT when T has n + ℓ boxes (see

equation (A.1)).

As a consequence of this structure O[Λ1, µ, ν, β1;R1; τ1] and O[Λ2, µ, ν, β2;R2; τ2] can

only mix at ℓ loops if we can reach the same (n + ℓ)-box Young diagram T by adding ℓ

boxes to each of the U(N) representations R1 and R2.

An alternative way of saying this is that if two U(N) representations R1 and R2 have

k boxes in the same position then they can first mix at n − k loops, since we have enough

boxes to add to R1 to reproduce the shape of R2.

This means that all operators of length n can mix at n− 1 loops, because all diagrams

share the first box in the upper lefthand corner.

We have focused here on the U(2) ⊂ SU(4) ⊂ PSU(2, 2|4) sector of the full symmetry

group of N = 4. It seems fairly obvious that this work extends to U(3) because the

effective vertex gains similar terms to the U(2) vertex and the basis of [1] accommodates

a general U(M) flavour symmetry; the remaining sectors [20] would require more work,

especially given that the basis constructed in [1] doesn’t extend there yet. It would be

particularly interesting to extend the work of [26] and understand the counting of sixteenth-

BPS operators at one loop in the non-planar limit, and hence gain an understanding of

black hole entropy via AdS/CFT.

There are satisfying group-theoretic expressions for extremal higher-point correlators

of the Clebsch-Gordan operators at tree level [1]. It would be interesting to see how much

of this structure survives at one loop.

Finally we point out that another complete basis in the U(2) sector, the restricted

Schur polynomials, have neat tree-level two-point functions and their one-loop properties

have been studied [27 – 30].
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6. Discussion

The main motivation for studying these operators and their mixing is that N = 4 super

Yang-Mills has a dual string theory on an AdS5 × S5 background [31 – 33]. We give here

some techniques that allow us better control of the regime where the length of operators

is arbitrary, λ is non-trivial and N is finite, the regime where the ‘strong’ Maldacena

conjecture might hold beyond the planar ’t Hooft limit.

We have no clear idea what the tree-diagonal operators constructed in [1] correspond

to on the string theory side. They are not eigenstates of the one-loop dilatation operator,

but their limited mixing might pave the way for such a diagonalisation. The BPS operators

map to giant graviton branes when the operators are large [34 – 37]. Some hints on how to

obtain these operators from the Clebsch-Gordan basis were given in [1].

On the string side splitting of strings is suppressed by gs ∼ 1/N . One lesson perhaps is

that it is fruitful to think in terms of Young diagrams gaining and losing boxes as well as in

terms of traces splitting and joining. An advantage of the Young diagram methods is that

the finite N constraint is clear in terms of a limit on the number of rows. It would be inter-

esting to understand how this constraint [38] is implemented for general string states, par-

ticularly given that it is reminiscent of the level cutoff of Wess-Zumino-Witten models [39].

Representation theory and Schur-Weyl duality played an important part in our

understanding of 2d Yang-Mills and its string dual [40 – 42]. We hope that Schur-Weyl

duality, and the interplay between the gauge group and the symmetry group, will provide

vital clues for our understanding of d = 4,N = 4 supersymmetric Yang-Mills and the

string on AdS5 × S5.
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A. Conventions and formulae

R ⊢ n is an irreducible representation of Sn and also of U(N). It can be drawn as a Young

diagram with n boxes; representations of U(N) have at most N rows.

dR = n!
Q

i,j hi,j
is the dimension of the symmetric group representation R, where hi,j is

the hook length for the box in the ith row and jth column.

DimR is the dimension of the unitary group U(N) representation R, given by

DimR =
∏

(i,j)∈R

N − i + j

hi,j

(A.1)

Again i labels the row coordinate and j the column coordinate of each box in R.

The Sn Clebsch-Gordan coefficients satisfy for a permutation σ ∈ Sn

∑

j,l

DS
ij(σ)DT

kl(σ) SτR,R
s

S
j

T
l =

∑

t

DR
ts(σ) SτR,R

t
S
i

T
k (A.2)
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i2 i3 i4i1i2 i3i1 i4

δi1
j4

δi2
j1

δi3
j2

δi4
j3

= (1432)

j1 j2 j3 j4

=

i2 i3i1 i4

=

j4 j1 j2 j3 j1 j2 j3 j4

Figure 6: From delta functions to diagrams to permutations

α
δ

ik
jβα(k)

=
β

ik

jk

Figure 7: Permutations in series; thick lines represent many strands

ik

jk

β−1

α−1
δ

iβα(k)

jk
= δ

ik
j
α−1β−1(k)

=

Figure 8: Permutations on the upper index

This tells us how to obtain matrix elements from the symmetric group inner product

R ∈ S ⊗ T . τR labels the multiplicity of R in S ⊗ T .

B. Diagrammatics

Diagrammatics [4] encode the ’t Hooft double-line indices. We follow the index lines with

delta functions and permutations, see for example figure 6. We read the permutations in

the diagrams from the top down. This is also illustrated in figure 7, where we remember

that in the permutation βα we read from right to left, so that α acts first followed by β.

Also in figure 7 we clump several strands labelled by k into a single thick strand, for clarity.

If we write down a series of delta functions we can always alter the order in which we

write them down with any σ ∈ Sn, given that they are just numbers

δi1
jα(1)

· · · δin
jα(n)

= δ
iσ(1)

jασ(1)
· · · δiσ(n)

jασ(n)
(B.1)

This allows us to deal with permutations on the upper index, see figure 8.

If we have δ
iα(k)

jβ(k)
and we set jk = iσ(k) then we get

δ
iα(k)

jβ(k)
δjk

iσ(k)
= δ

i
αβ−1(k)

jk
δjk

iσ(k)
= δ

i
αβ−1(k)

iσ(k)
= δ

iα(k)

iσβ(k)
(B.2)
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C. Symmetric group representation matrices

Here we briefly review the Young-Yamanouchi construction of real orthogonal representing

matrices for an Sn representation T [19], which is summarised in Hamermesh [18].

The matrices are constructed recursively: we assume that we know all the representa-

tion matrices for all the representations of Sk for k < n. We also know that on elements

of the subgroup Sn−1 ⊂ Sn the representation T reduces to a sum of those irreducible rep-

resentations of Sn−1 that have one box removed from T (see for example equations (4.8)

and (4.9)). Given that we know all the representation matrices for all of Sn−1 we know the

form of the representation matrices for T on Sn−1 ⊂ Sn.

To reach those permutations that also act on the last object, all we need to know in

addition is the matrix for (n−1, n), DT ((n−1, n)). To obtain this, we observe that this ma-

trix commutes with all the matrices for the subgroup Sn−2 ⊂ Sn, since they are permuting

separate groups of objects. We can then use Schur’s lemmas to obtain DT ((n − 1, n)).

Type I: T11

××

and T55

××

Type II: T13 = T31

×

× , T34 = T43 ×

×

, · · ·

Type III: T32
×

× (C.1)

To get the representing matrices of T on Sn−2 ⊂ Sn, we must reduce T by knocking off

two boxes. We label these irreps of Sn−2 by Trs where r is the row from which the first box

is knocked, s the second. There are three different situations when we knock off two boxes,

called Type I, II and III. These are exhibited for the example given in equation (4.8).

For Type I and Type III the second box can only be knocked off after the first one:

Type I is when the second box is to the left of the first on the same row; Type III is when

the second box is above the first on the same column. For Type II both boxes can be

knocked off independently and Trs = Tsr.

This reduction of Sn representations on subgroups is also called branching.

D. Further analysis of the matrices

Here we analyse in more detail the one-loop mixing of the Clebsch-Gordan basis for R1 = Tr

and R2 = Ts and r 6= s given in (4.13).

It turns out, given the recursive construction of the representing matrices (see ap-

pendix C), that we know DT
q1
r

p2
s
((n, n+1)) exactly. If we further restrict T to Sn−1 then the

representation reduces to Young diagrams with two boxes removed from T . Trs = Tsr is the

common Sn−1 Young diagram obtained when boxes are removed both from the rth and sth

rows (see figure 9). It is Type II because the boxes can be removed independently. Because
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Figure 9: Restriction pattern for Sn+1 → Sn → Sn−1

(n, n+1) commutes with all elements of Sn−1, DT
q1
r

p2
s
((n, n+1)) is only non-zero in the case

DT
q1
rs

p2
sr

((n, n + 1)) =

√

τ2
rs,rs − 1

|τrs,rs|
Ers,sr (D.1)

where Ers,sr is the identity matrix. If the row lengths of T are given by tr then τrs,rs is10

τrs,rs = (tr − r) − (ts − s) (D.2)

Unfortunately we can’t work the same magic on DT
q2
s

p1
r
((µ, n + 1)).

There are also branching-type recursive relations for the Clebsch-Gordan coefficients

(see the end of section 7 of Hamermesh [18]).

Given that we know (4.13) is diagonal in the U(2) states, this may imply non-trivial

identities for these symmetric group reduction formulae.

E. Example

We consider the case with U(2) representation Λ = and field content XXY Y . This

must be a highest weight state of Λ because the field content matches the rows of Λ. Thus

β is unique.

The three allowed U(N) representations are R = , , , for which Λ only

appears once in the symmetric group inner product R ⊗ R.

Here ΦrΦ
r = ǫrsΦ

rΦs = [X,Y ].

O
[

Λ = ;R =
]

=
1

12
√

2
[tr(ΦrΦs) tr(Φr) tr(Φs) + tr(ΦrΦ

rΦsΦ
s)] (E.1)

O
[

Λ= ;R=
]

=
1

12
√

6
[tr(ΦrΦs) tr(Φr) tr(Φs)+tr(ΦrΦs) tr(ΦrΦs)−tr(ΦrΦ

rΦsΦ
s)]

(E.2)

O
[

Λ= ;R=

]

=
1

12
√

6
[tr(ΦrΦs) tr(Φr) tr(Φs)−tr(ΦrΦs) tr(ΦrΦs)−tr(ΦrΦ

rΦsΦ
s)]

(E.3)

10τrs,rs is also known as the axial distance.
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The tree level correlator is diagonal







1
12N2(N2 − 1)

1
18N(N2 − 1)(N + 2)

1
18N(N2 − 1)(N − 2)







=

















Dim

4
9Dim

4
9Dim

















(E.4)

At one loop everything mixes







1
4N3(1 − N2) 1

4
√

3
N2(N2 − 1)(N + 2) 1

4
√

3
N2(N2 − 1)(N − 2)

1
4
√

3
N2(N2 − 1)(N + 2) 1

12N(1 − N2)(N + 2)2 1
12N(1 − N2)(N2 − 4)

1
4
√

3
N2(N2 − 1)(N − 2) 1

12N(1 − N2)(N2 − 4) 1
12N(1 − N2)(N − 2)2







=





















−3NDim 2
√

3Dim 2
√

3Dim

2
√

3Dim −2
3(N + 2)Dim −5

3Dim

2
√

3Dim −5
3Dim −2

3(N − 2)Dim





















(E.5)

The diagonal terms seem to be the dimension of the irrep. enhanced by the contribution

for a specific box, furthest from the top left.

F. Code

All correlators at tree level and one loop can be checked with the correlator pro-

gram written in python and released under the GNU General Public Licence at

http://www.nworbmot.org/code/.
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